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NEUTRON FLUX DISTRIBUTIONS IN MULTIPLE REGION REACTORS

- ABSTRACT -

In this report the problem is considered of determining neutron flux
distributions in reactors consisting of discrete regions of substantially dif-

ferent nuclear properties.

Starting with these equa-
tions the problem is considered of determining the flux in one of the energy
groups given the spatial flux distribution of the next higher energy group.
The problem is handled by converting the differential equation with source term
to an integral equation; under appropriate conditions the integral equation
may be solved by a numerical iterative procedure. The conditions under which
this may be done are discussed and formulas are developed for placing bounds
on the errors., In addition the technique of obtaining flux distributions in
complicated configurations by additive and multiplicative superposition of
flux distributions of simpler configurations is considered. Expressions are
derived for estimating the errors mede in using these methods. A number of

simple examples are presented.




SYMBOLS

see pege 16

neutron diffusion constent in i'th medium
thermal neutron group diffusion constant

fast neutron group diffusion constent

Greenfs function

the itth region

the surface of themi“th region

material multiplication constant

resonance escape probability

source strength of neutrons in the i'th region

position vectors

see page 18

error in the ntth iterate

(5,/0)Y*

neutron absorption cross section

thermal neutron group absorption cross section
fast neutron group absorption cross section
neutron flux

thermal neutron flux

fest neutron flux

gradient operator

derivative in the direction of the normal



NEUTRON FLUX DISTRIBUTIONS IN MULTIPLE REGION REACTORS

Sylvan Wallach

NTRODUCTION

The studies reported in this paper were carried out to develop methods
for determining the flux distributions in reactors made up of discrete regions of
substantially different nuclear properties.

A procedure for
caleulating the flux distribution by an iterative technique is presented here as
well as certain analytical results perteining to the general problem. This work
was carried out at the Westinghouse Atomic Power Division under Atomic Energy

Commission Contract AT-11-1-GEN-14,




The problem of determining the thermal neutron flux for a reactor
heving discrete regions has been considered within the framework of multi-group
diffusion theory. A two-group model is used.

A very considerable simplification of the problem can be made by assuming in
the two-group case that the fast flux spatial distribution is known or may be
satisfactorily approximated. For the multi-group case & gsimilar remark applies
to the flux in the group next higher in energy than the one under consideration,
From a mathematical point of view the problem then becomes one of finding ap-
propriate solutions to the Helmholtz equation with sources in multiple regions

with boundary conditions given for the function and possibly its gradient.

The problem outlined may be attacked by direct numerical solution of
the differential equation with boundary conditions. This is the technique
which has been used successfully by Garabedian and Schiffox They have applied
the relaxation method of Southwell to determine the flux distributions at and
zbout cross shaped water channels. Another approach, the one developed in this
report, is to convert the differential equation and boundary conditions to an
integral equation. The integral equation lends itself well both to analysis
snd to solution by numerical procedures. No comparison of the two techniques,
insofar as numerical solution is involved, has been attempted. It is likely
thet both methods have their respective advantages which may be significant in

specific situations. The integral equation approach is, as will be seen,

% H, L. Garabedian and R. R. Schiff,
WAPD-RM-89.




amenable to analysis and permits bounds to be set on the errors involved in the
numerical solution. Further it appears that fairly good results can be obtained

with it starting with poor initial approximations

Part I of this report is concerned with the derivation of the integral
equation and a discussion of its form. An iterative procedure for solution of
the equation is developed and the conditions under which the iterative proce-
dure converges is studied. It is shown

that the iterative procedure converges for a convex water hole,
Bounds for the errors in the iterates are developed under these convergent con-
ditions, It is also shown that the iteration will fail to converge under cer-
tain circumstances., Simple examples of a slab water hole and a cylindrical
water hole in an infinite reactor are solved to illustrzte the technigue.
Finally a cross water hole is considered to illustrate the procedure for a non-

convex region,

Part II consists of a discussion of the technique of additive super-
position to obtain flux distributions by addition of the distributions for
simple regions and the technique of multiplicative superposition to obtain flux
distributions for finite reactors. As an example of additive superposition a
cross water channel is solved by superposing cylindrical water holes. Expres-
sions for the errors introduced in superposition are developed for both additive
and multiplicative superposition. Several additional examples in slab geometry

are included to illustrate the methods.




I. THE INTEGRAL EQUATION FOR DIFFUSING MEDIA

This part of the report is devoted to the derivation of the integral
equation, a description of its use, and its application to some simple problems.
Tt will be shown how bounds for the flux can be estimeted and sufficient condi=

tions for the convergence of successive approximations will be derived,

1., The Two Group Diffusion Equations

The steady state two group diffusion equations are

(1.1) VD Vo, - 20, +p2pp = O
ks 0
(1.2) VD, Vo, - Zf(pf +bzsxps = 0 .

Suppose we are interested not in criticality, but only in the thermal neutron
flux distribution. Then, rather than attempt to solve a complicated charac-
teristic value problem, it is frequently sufficient to guess at the form of Pp
and to solve (I.1l) for 9g0 The slow flux thus obtained is often a very good
approximation to the correct flux, ® Instead of (I.1) and (I.2), let us

therefore consider for the present

(1.3) UV - 29 +q = 0 ,

where we are now interested only in the thermal geutron flux and q = p)Zf@f is
the source term for thermal neutrons. Of course ¢ can be any neutron energy

group of interest and g the appropriate source term. It is equation (I.3)

% If desired, the assumed values for @. can be checked by putting the calculated
¢g in equation {I.2) and solving for ¢,.. If the iteration is continued, and
if the solutions obtained are suitebly normalized, the iterations can be ex-
pected to converge to the fundamental modes of the fast and thermal fluxes,

10




FIGURE |

REACTOR CONSISTING OF 3 HOMOGENEOUS MEDIA
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to which Garabedian and Schiff have applied the relaxation technique and which
we shzll now convert to an integral equation. Freguently equation (I.3) is
referred to as a one group theory although it is much more closely related to
two group diffusion theory than to the one group theory from which is derived
the equation VDV¢ + (k-1) X = 0. It would be apt to say that (I.3) is

bzsed on a modified two group theory.

2. The Modified Two Group Integral Equation

In this section the integral eguation defining the thermal flux dis-
tribution in a region consisting of three homogeneous diffusing media will be
derived from equation (I.3). The usual boundary conditions, i.e, continuity of
flux and of current at interfaces, will apply. On finite boundaries ¢ = 0; if
the medium extends to infinity it is required that ¢ remain bounded. The latter
requirement ensures the vanishing of a surface integral, /ﬂ@ %% , where G is a
Green's function to be defined below. Consider some arrangement of the media

such as is shown in Figure 1.

Let us rewrite equation (I.3)
(1.4) VoVe - 2.9 = (2 - 2))9-a ,

and consider also

2
(1.5) DlV G - ElG 0 .

The solution G of (I.5) is the Green's function appropriate to the total
volume under consideration, and the boundary conditions. It is the flux dis-
tribution created by a point source of neutrons. If the region is finite, then
G vanishes on the outermost boundary, S; if the region extends to infinity,
then G tends to zero at infinity. More precisely, in the two dimensional case,

G{r,r') is the solution of (I.5) which vanishes on the boundary, S, which has a




logarithmic singularity at r? and which is normalized so that

D
1 3G
f Gz—“ﬁ+ﬁwjo
R 2, g on

1+2+3

If the medium R, extends to infinity in all directions then G = KO(Kll r-rt|)/2m.,
where KO is the zeroth order Bessel’s function of the second kind with imaginary
argument.,

Let us call region R1 the external region and regions R2 and R5 in-
ternal regions. Let the point of interest be an internal point, say at r in
Ryo Multiply eguation (I.4) by G, equation (I.5) by @, subtract, and integrate
over all three regions with the exception of a sphere, 2, of radius € around
the point r. Transform the integrals by Green's theorem and let € — O,

Observe that

1m/a-§-§=o, 1im f@—g%:(po
e—0 'S €—0 SE

There results, in view of the boundary conditions and the continuity of G

end its gradient,

(1.6) -Dy¢ + (D;-D,) f V ¢VG + (D;-Dz) lim V- VaG
R2 €—0 5=Z

=f /(s -Z)e-a/ -

R'l+2+5
Now
f V(poVG = f (p-a-g“ f (psz
R s. 9 R
2 2 R
_ o 2
= {p "a‘l’l - (p D G’ °
82 R2 1




Llsc

>
1im fv’@”vG = / <9=-§r§-+@m f @mﬁl‘ a .

Substituting in ( I1.6) andmaking some rearrang ements, we obtain
o [=] s

I o - 9G D) ot
(L.7) Dgp = (Dy-Dy) / ©3n * (DyDy) ? Bn
B2 53

5 o o 2
*"’\"1‘“'<.2)D;3fRG“’*"(’<:L‘K5)Dz>/R Go

2 3
+ f qu t+ £ (qz"ql)G + f (qs"ql)c‘ v
R1+2+5 P R5

It is evident from the symmetry in the right hand side of (I.7) that
exactly the same expression will be obtained for D2¢ if the point r is in region
R20 It is slso clear how additional regions can be inciuded. Perhaps not so
obvious is the fact that for points in region Rl’ Dl@ also is given by the right
side of (I.7). It must be remembered, however, thet the singularity of G is at
the point r of interest, and that the contributions of the surface integrals
undergo discontinuitiés as the point r crosses an interface between media. Thus
the content, if not the form, of the right hand side of (I.7) is different in the

three cases,

Equation (I.7) is an inhomogeneous linear integral equation for the
flux @. It should be noted that the integrals containing ¢ involve only the
internal regions R2 and Rsu Thus the integral eguation can be solved for the
flux in regions R, and RS without any consideration of the flux in Rlo After

2

the flux in R2 and R5 has been determined, the flux in region R1 can be ob~-

tzined by integration. This fact is important in solving (I.7) by iteration.

1k




It is necessary only to assume trial values. for the flux and to iterate in

regions R, and RS in order to determine the flux there.

In solving (I.7) by iteration the flux on the boundaries of regions
R:2 and R5 can be found in two ways, according as the boundary points are con-
sidered internal points or external points. In some cases the flux at external
points, obtained by one iteration, is very much less sensitive to the starting
values than is the internal flux, Hence it may sometimes be advantageous to
estimate starting values for the iteration in regions R2 and Rg, iterate once to
obtain improved values on the boundaries of Rz and R5’ and then to make new es-
timetes of the flux in R2 and R5 from these boundary values.

The integral equation (I.7) divides the contributions to ¢ neatly
into three parts--the first part caused by the differences in the diffusion
constants, the second part caused by the differences in the k's; and the third
pert caused by the differences in the source terms, This fact can be very
useful. In & given problem it will be clear how to alter the values of the con-
stunts so as to obtain simpler integral equations whose solutions majorize and
minorize the flux sought. It is particularly advantageous, from the point of
view of computation, to eliminate the surface integrals. The extreme example
of this device is the majorant provided by the maximum value of qi/E:i and the
minorant provided by the minimum value of qr/E:i’ i.e. the largest and smallest

asymptotic values of the fluxes.

3. Formal Solution by Iteration

In this section the solution of the %ntegral equation (I.7) by the
method of successive approximations will be discussed in a purely formal manner,
Questions of convergence are deferred to sections 4 and 7. We consider only
the physically interesting case in which Di’ Zi, q; are non-negative and all
qi;é 0, and we teke it for granted thet the integral equation then has a unique

solution which is positive everywhere.

15




For simplicity write the integral eguation (I.7) in the form

(1.8) ¢ = Ap+B ,

where A is a linear integral operator and B is a known function. Let ¢ be
the solution of (I.8) and let @y = @ + €, be a zeroth approximation. Neither
the flux ¢ nor the error €, is known, only their sum 9 is given. Then the

0
successive approximations are defined by

(1.9) ¢, = Ao, 5+ B.

The error 60 is itself the solution of an integral equation like (I.8), for
we have

(1.10) €9 T Aeg gy -9 o

Bounds for the error €, can be estimated from (I.10).

0

The errors in the successive approximations are obtained as follows:

(I.11) €9 = 9 -9 = Mgy -9) = A,
_ _ .2
€p T A& = A€,
° _ ,.n
€y T A€y

Hence the error en--0 if and only if Anéo — 0., The important fact
is that if it is possible to derive an estimate |e_| < 77|€n-»1| , 0<7 <1,

from the equality €, = A€n~1’ then it can be asserted that the grror is reduced

by at least the fraction 1-7 at each iteration. Together with an estimate of




INTERNAL REGION, R
Sy /
- /,

EXTERNAL REGION, R,

FIGURE 2

SINGLE CONVEX INTERNAL REGION
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€g» one is then in a position to determine a bound for the error in any iterate.
Clearly the convergence of the successive approximations to ¢ is equivalent

to € — 0.
n

4, Convex Regions

This section, and section 7 below, are concerned with the problem of
convergence ol the successive approximations defined by (1,9)., For & single
convex internal region the guestion of convergerce is answered by the theorem
on page 22, The present section contains the proof of this theorem, as well as
derivetions of inequalities giving bounds for the flux and the errors. Non=
convex regions, for which less is known, are discussed in section 7. By way of
examples, the flux distribution in a sleb weter hole is calculated in section 5,

and in & cylindrical water hole in section 6.

A convex region is defined by the »roperty thet every chord intersects

thie surfezece &t most twice.

Let Rz, Figure 2, be convex. The flux in R2 is the solution of

(112) e = -0y [+t kA, [+ Jaor [aaps.
“ 1 7R S an 1 2 2 er XL R < 1
Q 4 R1+2 ?

With the physical situation in mind we introduce the following as-

sumptions and ncotetions:
P
(DlxDz)/D:Z:aZO, K&~ K" = B20.
Other

ceges cen be discussed in 2 menner similer to the anslysis below. Also observe
that G >0, dG(x)/dx <0, and

Yy = Bi‘Z/‘R/‘qu+ {(q2_=ql)G_/7>0 ’
2

1+2

18




The integral equation (1.12) now reads

R oG
(1.13) ¢ = a _/‘Q e B ./‘QG +v
S. R:2

To apply the method of succescgive approximations we require a starting
function ¢ and an estimate of the error, € = P — @ These zre most easily
obtained by determining upper and lower bounds for the flux @. The simplest
bounds are the largest end smellest asymptotic velues of the flux but better
bcunds cen usually be calculated. Consider region R2 end let Pnax and Prin
denote the maximum and the minimum values of @ there., The convexity assumption
implies 8G/0n < U on Szo Since a, B, and y are non-negative, it can be con-

cluded from (I.13) that
S,

8]
(I.15) ¢ 2 app 4? Pin ‘£G+y .

IA

°’!c>

Inequalities (I.14) and (I.15) furnish upper and lower bounds for ¢
&t any point r in region Ry in terms of Ppax “0d Pnin there. In particular
let r be a point at which Qpoy 1 attained. Solving (I.14) and (I.15) for

rives
Qmax g

B(pmm-{; G+y a(Pmin/S: g%+
(1.16) 2 <. < £ .
1-¢a -gf—; 1msf G
5, R,

19




Similerly, bounds for Quin 8T
e [
8Pmax «é on T Y l3(‘r)max R G+y
2 < < s
7 —_— < <
(I.17) Ppin ” o
1-8 f G 1—a/§£
R,, So
~

The inequalities (I.16) and (I.17) may be menipulated in verious ways.
The extreme inequslities cen be solved to provide a lower bound for Pax znd an
upper bound for @ . . Since it is appsrent that @ > min(q/Y), an upper
bound, y, for Ppey C21 be obtained from (I.16). Then an improved lower bound,\I/j
for Pmin is given by the left side of (I.17). To what extent further manipula-

tion is desirable depends on the problem at hend.

It should be observed that the upper bound for Poin furnished by (I.16)
ig itself a significent number., If qO/E:Z > q1/§:1 then the
P X > . . .
fects that D2 Dl and that R2 is convex imply Pnin
R2 is convex and is large enough for diffusion theory to apply, the flux would

occurs on 82o Also since

not. be expected to vary greatly on the surface 820 These "facts" imply that the
upper bound for Pnin already furnishes an estimate of how much flux pezking will

occur in the externzl region,

As s zeroth approximation to the flux we can take P = (W +V)/2 and

know the error €, does not exceed () ~V)/2. The error €; in ¢ can be esti-

mated in verious weys, depending on how many iterates are available, Operating
on (1.10) with A gives € = Ael + ®p ~ @ from which it is possible to estimate
€, much as ¢ is estimated by (I.14) and (I.15). Alternetively, from ¢, + €

1
= + €_ are derived the inegualities
q)o O N

. <
min GO + @O - @1 = 61 max 60 + mo - ¢1 o

IA

20




Perhaps the simplest and most useful bounds for €, are obtained from
which furnishes

or, upon rearrangement,

|€1| < (ﬁ—aﬁz) fRG"'“ ]

nax léol o

The error will tend to zero and the successive approximations will converge

provided

(L£.18) (8 - aklz) f G+a<l

It is instructive to solve (I.18) for a.

1-8 Jg G K22 jﬁ G
e

_ R
1-f<12fc 1-/&2426

The preceding inequality is certainly satisfied if a < 1.




So far we have proved the first pert of the following theorems

Let a, B, and y be non-negative and let the region E_{Z

f a < 1, the integral equation (I.12) can be solved by the method of

be convex, then

!_h

successive approximations. But if o > 1, the successive approximations

can fail to converge for all sufficiently small regions _1?52; or for a

given region _112 the approximations can fail to converge for all suffi-

ficiently large a.

Before proving the latter assertions we shall illustrate them in a

particular case. Suppose B = 0 so that we have merely

€ =af€ 86
n g n-1 8n °

[ BEEAV)

Now 1let €
n

-1 8 i

=

23 >0, TbenénSaS /9’" = ag(wl+K2fG)o Choose
52 R2
@ > 1 and R, so that € < .3, This will certainly be true if

K * fG < (a - 1)/a. But then € 2 —ad f Lt , and the successive
1 n+l on
R S
2 2
errors will never tend to zero; they will in fact increase. It seems remarkable
that an arbitrarily good approximation, i.e., S as small as you please, cannot

ensure the convergence of the iterates.

A slight elaboration of the argument just given will complete the

proof of the theorem., Let en-l satisfy
< < < 3
0 <8, %€, 2
Let
M = max f G , m = min _[ G
Ry Ra




Then we have

-1 82 + (aK12 82 + BSl)m < € < --czSl + (aklzgl + 682)M 3

and if M and a satisiy

(o - 1)81
M S ) )
ar© 8, + 582

ve find

- <e <.
a 82 n 81 .

Now we want to show that €

4l 81, and that the argument can be

continmied. Clearly

ofD - (S x*+pB M7 S <8, .

P
Since
2 a -1
K < 2 =41
(o5 +Bdm < =2=58,
we have finally
< < 228
o) S T 2% .
Hence
3 < <
—c 82 T n+e T “‘81
< < 4
81 S ez S0 9,

LI )

_The errors remain outside the interval (- S, 8), and the iterates do not converge.

This completes the proof of the theorem.

23




H0L1OV3Y 3LINIINI NV NI 3T0H ¥31vM 8V1S

L/

W—A

W 'Y “IvId3IVN H010oV3Y




Now that the discussion of successive approximations for a convex
internal region is complete, we illustrate the application of the integral
eguation by determining the flux distributions in slab and cylindrical water

holes,

5, The Slab Water Hole in an Infinite Reactor

In all our examples we shall use the following physical constants:

Reacting Material, R1 Water Hole, R2
075 0162
K2 »200 0121
1.000 2.009

Since a = (D1 - Dz)/D2 = .70, the successive approximations are sure to converge.

Let the water hole, R2, be a slab 4 cm in thickness and let the reac-
ting material, Rl’ extend to infinity as shown in the sketch on page 24. The
flux, determined by an analytic solution of the differential eguation, is
{ 44,7 ¥ 4 18,2, x 22

(1.19) @ =
-53,1 cosh(.347x) + 102.9 , Ixl 22 .

This is illustrated in Figure 3, page 26,

The Green?’s function for the problem is

K | x~x]

G{x,x*) = e 1 /2Ki

and the integral equation, for ¢ in R2, reads after slight modification:

25
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2 k2

Di- Do -2K1 172 & 1| x-x
(I.20) olx) = =~ 5 p(R)e coshKix Ly j[ p(xt)e dx?
4 1 -2
4~ 4 & _Ky lgext q
+Ey ] L =5 -
- K
172 2 D2 1

One notes that the surface integral can be explicitly evaluated in those cases

in wnich ¢ is constant on the surface.

_ We shall calculate bounds for the flux and then obtain an approximate
solution ot (I.20) by iteration. As was pointed out on page 20, the maximum and
minimum values of the flux in the water hole occur at x = 0 and x = 2, The
right side of (I.20) is made smaller if ¢(x) is replaced by @(2). Then putting
x = 2, (I.20) can be rearrsnged to provide the lower bound p(2) 2 35.4, Next
put x = 0 and replace ¢(2) by the lower bound 35.4. This gives @(0) < 51,3,
An upper bound, 37.2, for @(2) is obtained by putting x = 2 and replacing
o(x*) by its majorent, 51.3, Finally @(0) 2 47.6 follows on replacing o(2) vy
37.2 and @(x*) by 35.4. In summary

49,8}
36.5 .

It is in a way surprising that such narrow bounds for the flux at the

IA
H

47.6 < @(0) < 51.3 ¢(0)
35.4 < @(R) < 37.2 {q)(z)

center and at the boundary are obtained. This fact results, perhaps, from the
geometry which tells us that the tlux has a constant minimum value at the sur-
face of the water hole. Ior many purposes, the fact that ¢ on the surface lies
between 35 and 37 is all the information required. Since the asymptotic value

of the flux is 18.2, the peaking effect of the water hole is well-defined.

i A first approximation, 9y to the flux has been calculated in two ways.
First, put Qo(x) = 43,4, -2 £ x <2, and @0(2) = 36, The values of Ql(x) cal-
culated from (I.20) are shown as circles in Figure 3 (page 26). The approxima-

tion 9, = 43,4 is very rough, yet ml(x) turns out to be close to the actual flux.
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This is due in part to the fact that a good approximation for the flux at the

surface is available.

& much better initial approximation, Py should be given by & line
segment passing through the tlux values 50 and 36 at x = 0 and x = 2 respec-
tively. For @O(x) we have @_ = - 7%l + 50, with |x| < 2. The values of
ml(x) obtained in this way are shown as squares in Figure 3 (page 26). Evi-

dently the more elaborate estimate of §y was not worth the effort.

6, The Cylindrical Water Hole in an Infinite Reactvor

The flux distribution in a cylindrical water hole (see sketch on page
28), 8 cm in diameter, was examined by means of the integral eguation. 7The Green's
funection is KO(KlLE - r'|)/2r; the constants are the same as in the slab treated

above. For the integral eguation we now have

. 2 2
Dl— D2 o(4) /‘ 6:(0 N (Kl - K2 ) f

(L.21) olr) = =537 an 27 R, @@ K|z - zl)
2 s, 2
ql"’ q2 f ql
t e, L Rolalz-z
2 21

The surface integral in (I.R21) is transformed to a volume integral
by Green's theorem., Expansion of KO(K1|£ - r'|) by the addition theorem for
Bessell!s functions and integration over the angular variable replaces the double

integrals by simple integrals which are manageable.

The exact analytical solution of (I.21) is

IA
S

( -45,5L,(.347r) + 102.9 r
(L.22) o(r) = {

v
[1-8
o

98,3 K0(°447r) + 18.2 r
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= @(0) are found exactly as before.

5208}
57.5 .

The first approximation @1(r) was calculated from ¢ = 46, @(4) = 33. The

Bounds for @ . = ¢(4) and @

31.6 < @(4) < 34.3 {@(4)
52.2 < @(0) < 60.5 , 9(0)

iterated flux @15 @s well as the correct flux ¢, is illustrated in Figure 4

(page 30).

7. Non-Convex Regions

The question of convergence of the successive approximations is by
no means simple for regions that are not convex. For purposes of computation
it is not only the fact of convergence which is importsnt; equally important is
the requirement that the successive approximations converge rapidly. It is
easy to see that no general criteria can ensure the convergence in a manner

which is useful. In equation (I.13), let B = 0. We prove:

vz

or every @ > 0 there exist regions, 32, such that the iterated error €,

|

is at some point arbitrarily large, althougthO is as small as you please.

There is no loss in generality in allowing €, to be discontinuous.
With respect to some point in a region, Rz, let 60 =35 > 0 on that part of
the surface where 8G/dn > 0 and let €0 = -8 where 8G/on < O. Then

) o
61-08£an .
2

|
Clearly there exist non-convex regions such that ‘/~ |6n is, for some point,

Se
greater than any preassigned number. This proves the assertion. Of course,
the counter example is pathological; one can hope that ordinarily the process of

iteration will not lead to disastrous results.
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Whet we can say is that ‘enl will certainly tend steadily to zero if

(1.23) mal:'?ll_ll <a fsz ‘%g\ + B 42 G< 1.

The only way of improving on (I.23) is to obtazin some knowledge of the distri-
bution of the error on the surface. One way of doing this is to obtain bounds
for ¢ at various points on the surface from the inegualities analogous to (1.14)
and (I.15) which are applicable to non-convex bodies. These inequalities will

be derived, for the cross-shaped water hole, in the next section.

8. The Cross—Shaped Water Hole in an Infinite Reactor

Our interest here is to show one way in which bounds for the flux in
non-convex regions can be calculated. The cross-shaped water hole is used only
for purposes of illustration. We already know an upper and a lower bound for
the flux—-the asymptotic flux values. Other bounds can be obtained by modifying
the physical constants to yield simpler integral equations whose solutions are
everywhere greater than or less than the correct flux. Our procedure here will
be to obtain inequalities analogous to those derived in section 4 for convex
regions. Let the point of interest be r, Figure 5 (page 32), and draw the
auxiliary surfaces shown by the dotted lines. In addition to the cross R2 and
surface 82, we consider the six regions RI, voo BVI and surfaces SI’ cou SVI°
All normals are directed outward. From the equality,

[='f+[- f

So SotSprtSy Sty SprtS1rrtStSy

follow
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8 < G /-Qg e
(1024) /@ - (Pmin f an + (pmin an - (‘pmax / an

So¥S111tSy SitStve SrSrtStSy
and
. 8 o o _ / 86
(£.25) /(p on — Pmax f dn t Prax [ on ~ %min on
Sy SotSrrrtSy S1r¥opy Sttty

where, in the first instance, the maximum and minimum values of ¢ are to be

taken on the appropriate surfaces,

These inequalities appear to better advantzge when rearranged thus:

g aG oG / oG
< Su - oG
(1.26) f ®an = %nin on * (q)min (Pmax) on ’?
Sy Sg Sttty
' L[C RN 86 9G
(LR7) Pan = Pmax on T ((pmax - (Pmin) _/ dn
Sy Sy St tSy

From (I.26), (I.27), and the integral equation (I.13) are obtained the

bounds, for ¢ in the cross,

: < 8G elty
(£.28) ¢ = nin [an + c‘((Pmin” (Pmax) fan t POy [G tyYy
S SII+SIII+SIV+SV R2
oG oG
(I.29) ¢ 2 O oy /55 + a(@ma.x‘ (pmin) [—-—-+ B(pmin /G +v
So Sttty Ry
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The right hand sides of (I.28) and (I.29) are unambiguous if ¢ _ and @ . are
understood to be the maximum and minimum values of ¢ in the entire region
RI + ooeo + RVI; the inequalities are sharper if Pnin and Opax 27 interpreted

to best advantage each place they occur.

Now we shall suppose that Ppay OCCUTS at the center of the cross, I
and that @ . (in the cross) occurs at the corner r,, Figure 6 (page 35). At
the point I35 8G/on is everywhere negative, i.e., the cross looks convex from
the center. Therefore inequalities (I.16) apply with ¢ . = @(;l) and @ . =
o(r,).

The only lower bound available for ¢ in regions RIlI and Rv is the
asymptotic value ql/§:l° The sharpest bounds for @(32) are obtained by using

(£.24) and (I.25):

q
< 4% G ' 8G ity
(1.30) olzp) = ag7 /an+“‘9@2) /an a0 (z,) on
SotSrrrtSy Sty Sttty
+BM%)/ﬂG+Y )
R,

q
(L.31)  o(z,) 2 aplzy) g%-ai- /%+Bﬂ%)/£+v-
So¥SrtSytSy S1irtSvtsy R, L

Solving (I.30) and (I.31) for Q(Ié) then gives the inequalities we set out
to derive:
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With these cumbersome inequalities we end our discussion of non-convex
regions. In a later report we hope to give comprehensive numerical results il-
lustrating the methods discussed in this report in their application to cross-

shaped water holes.

Before turning to the very important method of superposition, we make

an observation on the boundary values satisfied by the flux in the internal

region Rzo

9, Appendix to Part I

As was pointed out before, the integral equation (I.12) for the flux
in R, can be solved without any consideration of the flux in R1° Since ¢
} satisfies the differentiel equation (I.3) it is natural to ask whether or not
the integral equation (I.12) is equivalent to the differential equation and a
boundary condition on 82 which involves only the flux in Rzo This question

will be examined here.
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From the equations

(1.3) D2V2(p - chp +q, = 0

1
o
-

.= 2
(1.5) D,V - 2.G
is obtained at once the integral equation

(1.33) D = D /(G (pan)+(r< -K )D [G(p+q2 fG o
Ry Ry

Certainly this integral equation cannot determine ¢ since no boundary condition
has been imposed. Now equation (I.33) could be transformed to yield (I.12) if
the boundary condition were known. Hence the boundary condition must be im-

plicit in the equation obtained by subtracting (I.33) from (I.12). There

results
3G fﬁ@ [o =
Dlé[(Pan_DZSGan+ql G =
o o B
or
(I.34) f[D( B R c R 2 7. fG
° g 19 Zl an 2 an _Kl
o R

The preceding line is indeed a boundary condition, a very complicated boundary
condition. It asserts that we must select from all the solutions of (I.3) the

one whose boundary values make (I.34) an identity as a function of r.
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Suppose 82 and S are concentric cylinders with radii a and b respec-

tively. Then ¢ and 3¢/d0n are constant on 82 and the boundary condition reads

q
/ Dy6(a) ——z‘-l“J ]%%—Dgcp"(a) fG = % fG .
15 S b
Now put r = 0. Then
X (k.b)
a(rn) = g [0 - F s olar)
1 1
G = === /1 - —F— ,
Rj:L‘+2 o £ Tola®) 7
L9 (x b)
S%IGI-—; "K["l(Ka) I(Kb) l(Ka)JP
2
so that the boundary condition becomes
(K a) I, (K, a) q
(1055) Dl [ K (K b) I;(Kib) __7[(0(&) = _i_t _7
K. (x,a) I, (
01 1
* 0l Kok o) ™ (K b) J(P () = - NG

In particular, if b = o0 ,

Dy Ay l(K a) + DZKO(K a)pt(a) - KI(K a) = 0

Of course, the boundary condition (I.35) may be derived in a completely

elementary manner..
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II. THE METHOD OF SUPERPOSITION

Numerical solution of the integral equation for complicated configura-
tions is a formidable task. The difficulties are of two kinds., The first of
these is typified by the problem of many water holes in an infinite reactor, or
even of a single water hole with a complicated shape., Difficulties of another
kind enter into the calculations when the reactor does not extend to infinity.
For then we are faced with an unwieldy Green”s”funétion, if it is known at all,
and with source terms which cannot be considered constant in each homogeneous
part of the system. These obstacles are largely overcome by the use of the
method of superposition, a procedure which has often been applied, implicitly

if not explicitly.

. Consider two water holes in an infinite reactor. Let @(2) and @(5)
be the flux distributions due to each in the absence of the other one. Let
Qy/zl_be the asymptotic value of the flux. By superposition we mean the flux

distribution .

AU O 158 S
)

The question to be answered is how well does ¢(S approximate the correct flux

distribution ¢.

The term superposition will be used also in another sense. Let } be -
the flux distribution for a water hole in a reactor which extends to infinity.
Can the flux distribution for the same water hole in a finite reactor be

reasonably well described by the product

s) _

o'®) = yr

where F is a suitable weighting function, usually easily determined? We shall
refer to the two kinds of superposition as superposition by addition and super-

position by multiplication.
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More convincing than any abstract mathematical discussion of the power
of superposition is the drastic test provided by breaking up the cross shaped
water hiole into cylinders and superimposing the flux distribution of the
cylinders. The cross section of the cross shaped water hole we are considering
can be thought of as made up of 13 squares, Figure 7. The method of superposi-
tion used was to replace each square by a circle of egual area and to superim-
pose the flux distributions of the circles. The correct flux values as well as
the values obtained by superposition are plotted in Figure 8 (page 43). In this
case superposition underestimates the flux. The error in ¢ - (QP/ZJ), the flux
rise over the asymptotic value, is less than 20%. As will be shown below, the

fact of underestimation can be predicted and a correction can be applied,

Formulae which justify the method of superposition and which can be
used to estimate the superposition error will now be derived. Also a simple
first order correction to superposition is obtained. In section 1, superposi-
tion by addition is discussed and illustrated by finite sleb water holes in an
infinite reactor. Multiplicative superposition is discussed in section 2, where
we tzke as our example a slab water hole in a finite slab reactor. In section 3

a finite reactor with internal and external reflectors is considered briefly,

1. Superposition by Addition

We shall examine the flux distributions created by two diffusing

regions R2 and R3 in an infinite medium Rl,as illustrated.

Ry
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The flux ¢ i
(IIol)
where
(II.2) Lig) =
and

s the solution of the integral equation

D, = Llp) +Q

(0, -D,) f@ f‘i’aG

+ (<% - £, Jop+ (F - w0 Jop
Rz R,

_/qu + R{(qz-ql)G+ f(qs-ql)G .

+2+3

Let @(.2) and (9(5) be the flux distributions due to media R, and R5 separately.

Then

bl =

Let o(®) = (@) 4 o(®)

aG 2 R j
J

/qu + f(qj -q)6 , J
B1+2+5 By

2,3
ly,orj.

8
u

- q,/ 21 be the superposed flux. We want to estimate

Sq) =@ - (p(s) o It can be verified that S(p satisfies the following integral

equation

(11.3)

D.8¢ = L(8¢) + 3¢ , i=1,2,3 ,



where the operator L is defined in (II.2) and
q q
(11.4) 3@ = (p;-D,) f[(p(s)_ ilj %S + (D= D) f[¢(2)_ i'lj 'g%
Sé 1l S5 1
q q
+ (Klz"‘ K22)D2 f[(p(S)" EJ;JG + (Klz" Ksz)Ds f[(p(Z)" fl-JG
R2 1 R:,5 1
R i
+ (Dl - Di)[(p(l+(_l) ) - (ql/ zl)J °

Equation (II.3) is an inhomogeneous integral equation which differs
from (II.1) only in.the inhomogeneous term 53Q. If 3Q were zero then Sp=0
and superposition would give the correct answer. Note that (II.4) states that
the extent to which &Q differs from zero depends on the deviations of the fluxes
(p(z) and (p(s) from their asymptotic values in regions Ry and R, respectively.

The superposition flux () ig that approximation to ¢ in which 8¢ = 0.
Now S¢ = O can be thought of as a zeroth approximation in solving (II.3) by
iteration; hence a first approximation, 3¢;, to Sp is obtained by putting
S @ = 0 in the right hand side of (II.3). There results

S(Pl = SQ/Di ’

but it does not necessarily follow that cp(s) + 3(P1 is a better approximation
to ¢ than (p(s)o It can only be hoped that the iterate is more nearly correct
than ﬁh'e zeroth approximation. The correction is in the right direction, for
it can be assumed that OS¢ will have the sign of 3Q, at least if 3Q is either

everywhere positive or everywhere negative.

The sign of BQ in the internal regions can be determined for certain
problems of importance. Let the point of interest, r, be in Rz., Now we make

k5




the assumption R, is convex so that 9G/on is negative on 82° Put (p(l) - (ql/z l)

Ao . Toen i > 2 _ k2
= A¢*"’, Then, if a = (D1 - D2)/D2 =0, p=rN" -5 2 0, we have
89 < o S A8 i A o(3)
<a/ ¢ % - ming B+ _/
Dy Ry S

+[BmaxRA(p(3)+K12°minSA(P(5)_7 fG+—]§_- ’
2 2 R2 2

8q 5 [minRzA (9(5) _ maxszA (9(5)_7

+ [B minﬂzA (p(s) + Klza ma.xSZA cp(g)_? éG + —;; 5

where € is the contribution of the terms containing the integrals over SS and

R,. 1In deriving these inequalities it must be remembered that our assumptions

3

imply A(p(3) > 0.
For a> 0 it follows that 8Q < 0 in R2 if
2
maxp & o'®) t-f {; | €/D
(II.5) s S - 2 5
minSA(p() 1+%£G minSA(p(s)(a+[3] G)
< 2 2 R
and 8Q 2 0 in R, if
2
"’in'B,zA (p(5) 1=k 42(} €/D2
(1L.6) ® ° 148 - 6) °
max-SAcp 1+afG maxSA(p (o + B [G)
2 R, 2 Ry



The criteria (II.5) and (I1.6) are exact, but their usefulness de-
pends upon an estimation of €, In many cases the integrals over 83 and R5 will
be negligible compared with those over 82 and R;2 so that the terms containing €
can be ignored. The important contributions to the integrals over SS and R5
will come from that region of Ry nearest to R, since G, 8G/6n, and A(p(z) all
decrease rapidly with distance., Thus an approximation to € is ‘obtained if one
replaces, in both integrals, A(p(z) by a suitable average K(-p-(?') which is ap-

proximately the value at the nearest point. Then we find

o (3, - S fo
R
3

and € has the sign of Zl - 25.

The inequality (II.5) can be satisfied only if € is negative and, in
absolute value, not too small, On the other hand, it may be possible to satisfy
(II.6) when the € term is discarded. If € >0, it can be discarded, and (11.6)
then provides a sufficient condition, easily evaluated, in order that 3Q 2 0.
On physical grounds, and according to the examples which have been calculated,
the assumptions on which (II.5) and (II.6) are based, namely ¢ > 0 and § 20,
imply that S(p and hence OQ are greater than zero. This means that inequality
(II.6) rather than (II.5) should apply. Also, since 21 - 25 > 0, we have
€ >0, In other words (II.5) will probably never be satisfied and the suffi-
cient condition (II.6) may be satisfied. Similarly, if a and B are negative so
that the fl_ux is depressed in R2 only one of the ezisuing inequalities will in
fact be applicable.

It is of some interest to compare the superposition approximation with
the analytic solution in certain simple cases where the analytic solution may

be obtained.

k7
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(a) Two sleb water holes in an infinite reactor

We first exsmine superposition for the case of two slab water holes,
4 cm thick, and 4 cm apart in an infinite reactor (see sketch on page 48). The
correct flux, @, and the superposition flux q)(s), jllustrated in Figure 9 (see

page 50) are given respectively by the formulae:

¢ = 18.2 + 15.8 cosh .447x , 0<x<R
= 102.5 - 6.62 e°OM8% _ gp,1 o038 2<x<6

= 18.2 + 276.9 &%, x> 6

o' = 18.2 + 14,9 cosh .447x 0<x<2
= 102.5 - 52.8 cosh/-348(x-4)7 + 44.6 oo dT7(xH) oo v <

= 18.2 + 274.0 e 447X x> 6

(b) The reflected slab reactor

We next examine superposition for a finite reflected slsb reactor,l‘t
FigurelO, The flux @, the solution of D" - 2@ +q =0, is given by the

formulae
¢ = cy cosh le+ql/'zl, x in By
K
= ¢y e 2lxly q2/§:2 , x in R,

Dykolap/ 2y = 93/ 24)

1 D2K2cosh Kla + DlKlsinh Kla
= K, /DK, K28 oimh K
c, = - cl(Dl 3 Dy 2) e ) 18 o

A This exsmple was suggested by M. Danzker, Reactor Theory Section, Physics
Department, Westinghouse Atomic Power Divieion
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The superimposed flux, obtained by combining the fluxes when first

one, then the other reflector is replaced by the reactor material, is given

by:
(s) _ -Ka ' ;
() = 2dle cosh K%+ ql/E:l , x in Rl
- 7 (x+a) o(x-a) .
d,e +d,e + q2/§:2 , x in R,
with
- 3
1 Dafe * Dyf1
. o hale/ 2y - 9/2y)
& D' * D1

The ratio (¢ - (p(s))/ (0 - ql/ 21) has been plotted in Figure 10,
page 52, for several sets of values of the physical constants. In region Rl

this ratio is the constant,

1 - (Dyrp/Dy%))

e-2kla
1+ (szé/Dlxl)

so that superposition gives the correct answer, underestimates or overestimates
the flux in the core according as Dzké/DlKl =1, <1, or >1, No simple rela-
tionship holds in the reflector. Indeed, as shown by curve V, Figure 10,

9 - @(s) can change sign.

2. Superposition by Multiplication

Consider a reactor of finite extent composed of
two homogeneous parts, R1 and 32° We have in mind a bare
reactor with a water hole. The reflected reactor will be con-

sidered subsequently. Let Pp be the assumed fast flux,
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vanishing on the boundary and normalized so that max Qp = 1., The source terms
are q, = Zfchf in R, and q; = Zfl(Pf in By (Efl and Efz are the fast, Zl

and 22 the slow neutron absorption cross sections). Green's function G is the
solution of Dlv 2(} - zlG which venishes on the boundary., The flux ¢ is the

solution of the integral equation

3G 2 .2 /‘ f f
= - — - K
D; = (D;-Dy) Sf“’ To+ (°-8ID, JGo+ 25y J oG+ Zpp J PgC
2 R,  H 2
Now suppose the region Rl extends to infinity and that the source
terms sre the constants E:fl and §:f20 Denote Green's function for this problem
by Gko The flux distribution, Y, is the solution of
Space

%
Dy = (D-D,) S/ v &+ (P50, f[ Aty + Sgy fG" + (Sgp- Zgy) Hf2 .
2 2

The superposed flux 1is (p(s) = Y9es the error to be estimated is 3¢ = ¢ = qr(pfo
Put Gx =G+ BG. Then we can derive the following integral equatjon for S(po

(11.7) D3¢ = (D;-D,) SfScp —g—g + (Klz-/g?)b2 }[G S + 8q
2 2
(11.8)
8q = (D;-Dy,) /_ s[ <pf\1rg—§ - 9 Sf ¥ g—_f;/7+ («12_,%2)132/_ Hfz PG - @p f[z VG _/7
2 2

+ 2p /—ftvf —wffG /v 3¢ /-fwf —mffG /

1/ Ry R _/ 2/ R, R, _/
- (pfz/-(-Dl-Dz) é[\]!—a-rl—* + (Klz'“Kzz)Dz Pé(}q; + zfl _Bé-G + Zfz 4‘8970

P4
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is was to be expected, & ¢ satisfies an integral equation which
differs from the equation satisfied by ¢ only in the inhomogeneous term 3 Qo
Equation (II.8) furnishes justification for superposition by mltiplication
since &G will be smell provided R_L is large enough for d G to be small, and
provided Pp does not vary rapidly over the regions which ere significant in
the integrations. Hence R2 should not be too large nor too near the boundary
of Rla

By way of illustrating what can be expected of multiplicative super-
position, the flux pattern crezted by a slab water hole in a finite slab reactor
having the STR constants has been examined exactly end by superposition. (See
sketch on page 54.)

We are concerned here with a comparetively wide water hole very close

to the boundary of the reactor, Using the STR constants given on page 25, and
putting @, = cos %% the thermal flux is found to be

¢ = 18.2 cos I3 - 6.52x10-8 o *44TIX 4 105 o™o44TIX, 16 < x < 10,
= 102.9 cos I ~ 120 o= B34TIX _ go1g gToB4TIX 10 < x < 14,
= 18.2 cos X + 2766 o~ 44TIX _ ) gopy1070 & 44T, 14 < x < 16.
The superposition flux is
¢ = {~55.5 cosh/™.347(x-12)/ + 10209} cos g’% s 10 < x < 14,
= { ga.p oo M4T(x-12) 1802} cos &, -16< x <10
14<x<16 .

5
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The flux patterns are illustrated in Figure 11, page 56. Evidently
the method of superposition provides a reasonable approximetion to the correct
flux.

3, Combined Superposition

Now let us look at a three region problem. Region R1 is the reactor
core, R2 is, for example, a water hole inside the core, and R5 is a reflector

which we assume extends to infinity.

y

W
AA
W

A method of approximating the flux distribution, ¢, consists of
multiplying that flux distribution, Y, corresponding to a constant fast flux,
by an appropriate weighting factor, Ppe The flux distribution, ¥, corresponding
to a constant fast flux, can in turn be approximated by superposing the flux

patterns caused by R2 and R5 separately.

The flux ¢ is the solution of (II.1) with g4 = 2g.,@p. The flux y
satisfies the same integral equation with q; = Zfi. Then 8(0 =@ - \]l(pf is
the solution of

D;83¢ = L(3¢) + Llywy) - @Ll¥) + fszf - g f 2,6 3
+2+3 By io43

and 3 ¢ will be small if @p does not vary too rapidly.




4, Conclusion

In retrospect it can be said that empirical evidence justifies the
method of superposition under circumstances which at first sight seem drastic.
In addition, there exist analytical expressions which provide a theoretical
basis for superposition. On the other hand, attempts to estimate the super-
position error by the formulae developed here would usually not be worth the
effort.

If it is considered necessary to calculate the flux distribution in a
complicated configuration more accurately than can be done by superposition, then
it appeers advantageous to solve the integral equation not for the flux ¢, but
for the error S(p since this error is generally small and a slowly varying func-
tion. As was pointed out above, to a first approximation DiS ¢ = 3Q, a known

function.
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III. OTHER APPLICATIONS

In section 1 of part III we shall discuss the application of

integral equations to control rods, and examine the superposition principle

for control rods and for a control rod and a diffusing region. The extension
of the integral equation method to multigroup and characteristic value problems
will be outlined in section 2. Other aspects of the integral equations—-per-
turbation formulae, variational principles, etec.,~-will not be discussed in
this report. These matters are not difficult although the presence of surface
integrals differentiates the integral equations from those commonly treated

in textbooks.

1. Control Rods

The integral equation x defining the flux in the neighborhood of a
control rod is easily derived. Region R2 in the sketch on page 59 is the con-

trol rod, R1 is the diffusing medium. From the equations

sz(p- p+q = 0

DV - 3G 0

is derived the integral equation

¢ = -f[<p-g-§—G§§_7 + fG% .
51 By

% The integral equation (III.1l) has been previously derived by M. Danzker of
the Physics Department, Westinghouse Atomic Power Division.
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The usual boundary condition is a relation between ¢ and its normal derivative:

9 - _¢

an A ?

where A 1s a function of position on the surfezce Sl' With this boundary con-

dition the equation takes its final form:

(111.1) o = - é[( Dy ~/§ g, ‘/& : .

1

A detailed discussion of equation (III.1l) is unnecessary. We point
out only that the integral equation can first be solved for the flux on the sur-

face and then the flux elsewhere is obtained by integration.

2. Superposition of Control Rods

The integral equation satisfied by the flux distribution around two

control rods in an infinite reactor (see sketch on page 61) can be written

jk —-+-— o - ~/é % ‘/é .
R2+5

R1+2+5
(3)

The flux patterns ¢ and ¢/, created by the rods R, and R5 separately,

R
satisfy the equations

(p(i) = - Sf( an+}~) (l) F[Gg + fG s i=1,2 ‘

i +2+5

The superposed flux is defined to be ¢( 8) - @(1) + @ (2) -q/3.
Hence the error 3¢ = ¢ - (p( s) is the solution of
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50 = - [(L+E)50- f( S UL VED(§ -8 SIS
3

2+5

As was the case when R2 and R5 are diffusing media, the error in superposition

depends on the deviations of the individual flux patterns from their asymptotic

values.

The last example we shall mention is the superposition of a control
rod, Ry, and a diffusing region, Rz, in an infinite reactor, R, . The integral

equations for ¢ and the superposition error ¢ are:
_ 3G 2 2 f

D;o = (Dy-Dy) f‘P om * Ky~ g Dy JOO
52 R

3G , G .
- ‘/k 5;-+ x-)@ + ~[c]lG + .fng ’ i=1,2
S5 By Ro

D;d¢ = (D~D2) fgq) +(;< —K )D fGS(p
R

q
f( +$180+ @) [LoD-5t 78
2

q q
b (2,0, f[&’ 178 f( +DLeD-27

3. Generslizations

The extension of the integral equations derived above to include
several energy groups of neutrons or to characteristic value problems offers no

difficulty. Corresponding to each energy group there is an integral equation
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whose source term is the source of neutrons appropriate to the group. For
each group there will exist a Green's function which depends upon k énd the
boundary conditions. Apart from questions of convergence, the characteristic
value problem can be attacked by iteration since the ratios of successive
iterates tend to a limit which determines the reactivity of the pile. For
complicated geometries iteration of the integral equation or application of a
variational principle provides perhaps the most useful approach. Of course the
variational technique can be applied not only to the integral equations but to
the multi-group differential equations as well. A disadvantage of the varia-
tional method is that not only do the fluxes have to be approximated but the

adjoint fluxes also enter into the equations.
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